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Abstract. In this work we analyze the Total Variation (TV) flow ap-
plied to one dimensional signals. We formulate a relation between Dynamic
Mode Decomposition (DMD), a dimensionality reduction method based
on the Koopman operator, and the spectral TV decomposition. DMD is
adapted by time rescaling to fit linearly decaying processes, such as the
TV flow. For the flow with finite subgradient transitions, a closed form
solution of the rescaled DMD is formulated. In addition, a solution to the
TV-flow is presented, which relies only on the initial condition and its
corresponding subgradient. A very fast numerical algorithm is obtained
which solves the entire flow by elementary subgradient updates.

Keywords: Total Variation-flow · Total Variation-spectral decomposi-
tion · Dynamic Mode Decomposition · Time reparametrization.

1 Introduction

Finding latent information in high dimensional data is one of the most chal-
lenging tasks in data analysis. Often, dimensionality reduction techniques are
used to reveal the latent modes. In this work, we bridge between two methods,
Total Variation (TV) spectral decomposition [13] and Dynamic Mode Decompo-
sition (DMD) [17]. These methods analyze gradient descent flows, represented
as PDEs, and allow to perform filtering, spectrum analysis, and signal recon-
struction.

TV-flow [1], the steepest descent process with respect to the TV functional,
decays piecewise linearly and has finite support in time. This was used to com-
pute the spectral TV components and to analyze their properties, see [12,13,6,14,5].
The two attributes are at odds with Dynamic Mode Decomposition (DMD), an
approximation of the Koopman operator [16], which is described as an expo-
nential data fitting algorithm [2]. Moreover, it was shown in [10] that DMD
converges to highly inaccurate solutions, in certain cases, for flows derived by a
γ-homogeneous operator when γ 6= 1. One way to improve the accuracy of DMD
is by adding nonlinear measurements to the state space [20],[21]. In [10] a new
solution was suggested for homogeneous flows, of applying time-reparametrizing.
This allows perfect flow estimations, in certain cases, yielding excellent lineariza-
tion of the flow. In this work we follow and extend this direction. Understanding
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the time and manner of transitions of the subgradient are essential for the anal-
ysis of the TV flow. This leads both to effective mode decomposition, as well as
to an alternative numerical solver. The main contributions of this work are:

1. Formulating a closed form solution of rescaled DMD (R-DMD) for TV-flow.
2. Deriving TV spectral decomposition from R-DMD.
3. Proposing a new algorithm to concisely and rapidly evaluate the TV-flow.
4. Illustrating these methods numerically, showing the alternative solution ap-

proaches yield close to identical numerical results.

2 Preliminary

In this section, we summarize the definitions and methods of previous studies
relevant to this work.

2.1 Dynamic Mode Decomposition (DMD)

Given an observed set of N instances of length M , Ψ = [ψ0, ψ1, · · · , ψN ] ∈
RM×(N+1), generated by some dynamical system, the DMD algorithm [17] ap-
proximates the dynamics using a linear low-dimensional space. It finds the main
spatial structures (modes), their amplitude (coefficients), and the respective time
changes (eigenvalues). The three main steps of this algorithm are: 1. Dimension-
ality reduction, 2. Optimal linear mapping, and 3. System reconstruction with
modes, eigenvalues and coefficients. These steps are detailed below.

Dimensionality reduction. It is assumed that the data is embedded in a
lower dimensional space. To find this space we apply Singular Vector Decompo-
sition (SVD) on the data matrix,

Ψ = UΣV ∗. (1)

where V ∗ is the conjugate transpose of V .
The columns of U span the column space of Ψ , whereas the rows of V ∗ span

the row space of Ψ . The data is projected on the subspace spanned by r columns
of U , denoted Ur, related to the most significant eigenvalues,

xk = U∗r · ψk. (2)

Thus xk can be understood as the coordinates of a datum ψk with respect to
this basis.

Linear mapping. The linear mapping, F , from xk to xk+1, is obtained by

solving the following optimization problem, F = arg minF
∑N−1
k=0 ‖F · xk − xk+1‖2,

or, in matrix notation,

F = arg min
F
‖F ·X − Y ‖2F , (3)

where ‖·‖F denotes the Frobenius norm and

X = U∗r
[
ψ0 · · · ψN−1

]
, Y = U∗r

[
ψ1 · · · ψN

]
. (4)
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The solution to Eq. (3) is

F = Y X∗ · (XX∗)−1. (5)

Thus, the relation between two successive data coordinates is given by xk+1 ≈
F · xk, where ≈ is the approximation in the sense of error minimization of Eq.
(3). We assume the linear mapping, F , is diagonalizable and therefore can be
written as

F = WDW−1, (6)

where W contains the right eigenvectors of F , and D is a diagonal matrix whose
entries are the eigenvalues of F .

Modes, eigenvalues and coefficients. Reconstructing the datum ψk+1

from the corresponding coordinates xk+1 is formulated as ψ̃k+1 = Urxk+1. Sub-
stituting xk+1 by F · xk we get ψ̃k+1 ≈ Ur · F · xk. By plugging in the definition
of xk, Eq. (2), we have

ψ̃k+1 ≈ Ur · F · U∗r ψk = Ur · F · U∗r ψ̃k. (7)

Notice that the equality notation is justified as ψ̃k is the projection of ψk on the
subsapce spanned by the columns of Ur. Moreover, by generalizing this relation
we can approximate the entire dynamics as

ψ̃k ≈ Ak · ψ̃0, (8)

where
A = Ur · F · U∗r . (9)

Substituting Eqs. (6) and (9) in Eq. (8), we get

ψ̃k ≈
(
Ur ·WDW−1 · U∗r

)k · ψ̃0 = Ur ·WDkW−1 · U∗r · ψ̃0.

Now, we can define the modes, {φi}ri=1, eigenvalues,{µi}ri=1, and coefficients,
{αi}ri=1, having the dynamic mode decomposition.

Modes are defined as Φ =
[
φ1 · · · φr

]
= UrW . Notice that {φi}ri=1 are the

right eigenvectors of the matrix A and only them since the rank of A is r.
Eigenvalues are the diagonal entries of the matrix D. These are the eigen-

values of the matrix F and A.
Coefficients are defined by α =

[
α1, · · · , αr

]
= W−1U∗r ψ̃0. We can now

reconstruct the approximate dynamics by,

ψ̃k ≈ ΦDkα =

r∑
i=1

αiµ
k
i φi. (10)

The DMD algorithm is summarized in Algorithm 1.

2.2 Total Variation Spectral Decomposition

Let H be a Hilbert space with an inner product, 〈·, ·〉, and the corresponding
induced norm, ‖·‖ =

√
〈·, ·〉.
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Algorithm 1 Standard DMD [17]

1: Inputs: Data sequence {ψk}Nk=0; reduced dimensionality r.
2: Compute the Singular Vector Decomposition (SVD) of Ψ (see [19]) (Eq. (1)).
3: Form the matrices X and Y from the coordinates of the data (Eq. (4)).
4: Find the optimal linear mapping, F , between X and Y (Eq. (5)).
5: Compute the modes and the coordinates as Φ , UrW, α ,W−1U∗rψ0. The eigen-

values of the DMD are the eigenvalues of F , {µi}ri=1.
6: Outputs: {µi,φi, αi}r1

TV functional. The TV functional, is defined for smooth functions as,

JTV (ψ) = 〈|∇ψ|, 1〉, ψ ∈ H. (11)

Precise definitions for functions in BV and various properties of TV can be found
in [8]. We denote the subdifferential of JTV at ψ as ∂JTV (ψ) and a subgradient
as −P . They admit the following relation,

P (ψ) ∈ −∂JTV (ψ). (12)

We assume Neumann boundary conditions. Note that the thorough analysis of
the subgradient of the TV flow can be found in [1,3].

Eigenfunctions. The nonlinear eigenfunction, v, of P admits

P (v) = λ · v, (EF)

for some λ ∈ R. It can be shown (see [6]), that with the above definitions of P
we have λ ≤ 0.

The gradient descent of TV (TV-flow) is defined by the following PDE,

ψt = P (ψ), ψ(t = 0) = f, (TV-flow)

where ψt is the first order time derivative of ψ(t) and f is the initial condition.
TV spectral framework [13]. The spectral decomposition of a signal, f ∈

H, related to the eigenfunctions of P is based on the solution of Eq. (TV-flow).
We list below the definitions of the transform, inverse-transform, filtering and
spectrum of this framework. We simplify notations, assume all derivatives exist
and that the signal has no null-space components of JTV .

The TV-transform is defined by G(t) = t d
2

dt2ψ(t), where ψ(t) is the solution
of (TV-flow). The function G(t) is the spectral component of the signal f(x)
at time t.

The inverse transform is the reconstruction of the original signal f from the
spectral components, defined by f̂ =

∫∞
0
G(t)dt.

The filtering of f by the filter h(t) is fh =
∫∞
0
G(t) · h(t)dt, where h(t) is a

real function. Namely, filtering is an amplification (or attenuation) of G(t) in the
transform domain, t.
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The spectrum of f at any scale t is defined by S(t) = 〈f,G(t)〉.
If the initial condition, f , is an eigenfunction (admits Eq. (EF)), then the

solution of Eq. (TV-flow) is,

ψ(t) = (1 + λt)
+ · f, (13)

where λ is the corresponding eigenvalue and (a)+ = max{a, 0}, ∀a ∈ R. The
transform of this signal is

G(t) = f · tλ2 · δ(1 + λ · t), (14)

where δ(·) is the Dirac delta function.
Settings: In this work we first note that DMD is fully discrete (time and

space) whereas TV-flow and spectral TV are semi-discrete (time-continuous,
spatially discrete). Thus, in order to apply DMD on a gradient descent flow we
first need to sample (uniformly) with respect to the time variable t. In all cases
we use Euclidean inner product and norm. We list below some Attributes of the
semi discrete one-dimensional TV-flow and the TV spectral components:

1. The subgradient is piecewise constant with respect to t [6].
2. The initial condition can be reconstructed by knowing the subgradient as a

function of t (by integration).
3. The flow splits into merging events [4].
4. The average of the subgradient, −P , over the spatial variable is zero.
5. The spectrum is a finite set of delta functions, where each delta function

represents a spectral component [6].
6. For a given f , the spectral component set is orthogonal [6].
7. Two adjacent points which become equal in value during the flow, will not

separate [18,3].
8. There is a time reparametrization for which the TV decays exponentially

[10].

3 DMD of the TV flow

3.1 Closed form solution

Let us formulate Attribute 1 and Attribute 2 more formally. The solution of
(TV-flow) converges to a steady state in finite time. In this finite time, the
solution is divided into L disjoint segments, [Ti, Ti+1). In each segment, the
subgradient is constant, −pi ∈ ∂J(t), t ∈ [Ti, Ti+1), where for t > TL it is zero,
pL+1 = 0. The solution can be expressed by (e.g. [6]),

ψ(t) = ψ(Ti) + (t− Ti)pi, t ∈ [Ti, Ti+1). (15)

For an initial condition, ψ(0) = f , orthogonal to the kernel of JTV (constant
functions) the reconstruction of f from the set of subgradients {pi} is

f = ψ(0) =

L∑
i=1

Ti(pi+1 − pi). (16)
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Proposition 1 (Linear decay). The solution of (TV-flow) is a sum of spec-
tral components decaying linearly. More formally, if the initial condition, f , is
orthogonal to the kernel set of P then the solution of Eq. (TV-flow) is

ψ(t) =

L∑
i=1

(1 + λit)
+
ϕi, where λi = −T−1i and ϕi =

pi − pi+1

λi
. (17)

Proof. Let us reformulate the solution, Eq. (15) for the first time range t ∈ [0, T1].
Substituting Eq. (16) in Eq. (15), we have

ψ(t) = ψ(0) + (t− 0)p1 =

L∑
i=1

Ti(pi+1 − pi) + tp1

=︸︷︷︸
pL+1=0

L∑
i=1

Ti(pi+1 − pi) + t

L∑
i=1

(pi − pi+1) =

L∑
i=1

(Ti − t)(pi+1 − pi).

Therefore, ψ(T1) =
∑L
i=1(Ti − T1)(pi+1 − pi) =

∑L
i=2(Ti − T1)(pi+1 − pi). In a

similar manner, we can reformulate the solution for t ∈ [T1, T2) as ψ(t)|t∈[T1,T2) =∑L
i=2(Ti− t)(pi+1−pi). By induction, the general solution is, ψ(t) =

∑L
i=1(Ti−

t)+(pi+1 − pi). Denoting λi = −T−1i , this can be expressed as,

ψ(t) =

L∑
i=1

(−λ−1i − t)
+(pi+1 − pi) =

L∑
i=1

(1 + λit)
+ pi − pi+1

λi
. �

The spectral decomposition is computed by second order time derivative of ψ(t),

G(t) =

L∑
i=1

ϕi · tλ2i · δ(1 + λi · t). (18)

This coincides with Attribute 5: a finite set of Dirac delta functions. The flow
can also be defined (without using the operator (·)+) in disjoint time intervals,

ψ(t) =

L∑
i=k

(1 + λit)ϕi, ∀t ∈ [Tk−1, Tk). (19)

We will use this formulation later in our analysis.

3.2 Flow transitions and a fast TV-flow algorithm

While there has been on going research on fast methods for TV regularization
(e.g. [11,15,9]), few advances were made in fast algorithms of the TV-flow, which
is required for computing spectral TV. Our proposed solution, ψ(t) ∈ RM ×
[0, TL], is in a semi-discrete setting. The algorithm is based on the TV-flow
attributes listed at the end of Section 2.2.
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Algorithm 2 Accelerated TV flow and spectral decomposition (1D)

1: Inputs: f, δ > 0
2: Initialize: ψ0 ← f , p0 ← P (f), t← 0, T = ∅, and P = {p0}
3: while ‖pi‖ > δ do
4: Find the next time transition point, Ti+1 (Eq. (20)).
5: ψi+1 ← ψi + (Ti+1 − Ti) · pi.
6: Find clusters, {Mk}rk=1, where |∇ψi+1| = 0
7: Update the next negative subgradient, pi+1, such that pi+1(Mk) =

1
|Mk|

∑
Mk

pi(Mk), k = 1, · · · , r.
8: Add pi+1 to the set P; Add Ti+1 to the set T . Compute ϕi by (17).
9: end while

10: Outputs: T ,P

Subgradient transitions are time points where the subgradient is updated, de-
noted T = {Ti}Li=0 where T0 = 0, and TL is the extinction time. From Attributes
3 and 7 we can find these time points and compute the updated subgradient.
These steps are detailed below and concisely formalized in Alogirhtm 2.

Merging occurs when two adjacent pixels become equal. Then, the discrete
gradient approximation is ∇ψ(j) := ψ(j+1) − ψ(j) = 0, where ψ(j) is the entry j
of the vector ψ. Using Eq. (15), the first merging event after Ti can be calculated
by

Ti+1 = Ti + min
j∈J ∗

{−∇ψ(j)(Ti)/∇P (j)(ψ(Ti))}, (20)

where J ∗ = {j s.t. 0 < −∇ψ(j)(Ti)/∇P (j)(ψ(Ti)) <∞}.
Subgradient update is necessary after every merging event. According to

Attribute 7, the merged entries evolve together at the same pace. In addition,
the subgradient at other locations is unchanged (see [18]). Since the average of
the subgradient is zero (Attribute 4), the subgradient of the merged entries is
the average of the previous subgradient at these entries.

3.3 Rescaled-DMD

We follow the work of [10] where an analysis of DMD was carried out for flows
based on homogeneous operators. The homogeneity order dictates not only the
decay profile but also the support in time of the solution. In particular, TV-flow
decays linearly and has a finite extinction time, whereas a flow linearization algo-
rithm, such as DMD, can be interpreted as an exponential data fitting algorithm
[2]. In [10] it was suggested to solve this problem by time reparametrization. In-
troducing a new time variable τ , Eq. (TV-flow) is time rescaled by the flow,

ψτ = G(ψ) = −〈P (ψ), ψ〉
‖P (ψ)‖2

P (ψ). (R-TV-flow)

Note that, G(aψ) = aG(ψ), ∀a ∈ R. Therefore, this can be viewed as a flow de-
rived by a one-homogeneous operator, yielding exponential decay. Using (TV-flow)
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and (R-TV-flow), the relation between t and τ can be derived by,

d

dτ
ψ(t(τ)) = −〈P (ψ(t(τ))), ψ(t(τ))〉

‖P (ψ(t(τ)))‖2
P (ψ(t(τ))) = −〈P (ψ(t(τ))), ψ(t(τ))〉

‖P (ψ(t(τ)))‖2
d

dt
ψ(t(τ)),

yielding,

d

dτ
t(τ) = −〈P (ψ(t(τ))), ψ(t(τ))〉

‖P (ψ(t(τ)))‖2
. (21)

This ODE gets a different form in each segment, [Tk−1, Tk). Substituting Eq.
(19) in Eq. (21), we have

d

dτ
t(τ) = −

〈
∑L
i=k λiϕi,

∑L
i=k (1 + λit(τ))ϕi〉∥∥∥∑L
i=k λiϕi

∥∥∥2 = −
∑L
i=k λi‖ϕi‖

2∑L
i=k λ

2
i ‖ϕi‖

2
− t(τ).

The solution is,

t(τ) = ake
−τ − ck, ck =

∑L
i=k λi‖ϕi‖

2∑L
i=k λ

2
i ‖ϕi‖

2
, (22)

where ak depends on the initial conditions of every segment such that t(τ) is
continuous (where t(0) = 0). Then, the time points {Ti}Li=1 are mapped to
{τi}Li=1, accordingly.

Fig. 1: Time reparametrization - Left, TV-flow ψ(t). The TV-flow decays
piecewise linearly. With time reparametrization, R-TV-flow, ψ(τ), it is mapped
to a piecewise smooth function, depicted in Right. The nonsmooth points rep-
resent transitions in the subgradient.

Proposition 2 (Main TV-flow modes). In every disjoint kth interval, [τk−1, τk),
the solution of time reparametrizing (TV-flow), Eq. (R-TV-flow), has two
main orthogonal modes, ξk1 , ξ

k
2 , with eigenvalues zero and minus one.
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Proof. Substituting Eq. (22) in Eq. (19), we get

ψ(t(τ)) =

L∑
i=k

(1 + λit(τ))ϕi, ∀t ∈ [Tk−1, Tk)

=

L∑
i=k

(
1 + λi

(
ake
−τ − ck

))
ϕi, ∀τ ∈ [τk−1, τk)

=

L∑
i=k

ϕi − ck
L∑
i=k

λiϕi︸ ︷︷ ︸
ξk1

+e−τ ak

L∑
i=k

λiϕi︸ ︷︷ ︸
ξk2

= ξk1 + e−τξk2 , ∀τ ∈ [τk−1, τk).

By plugging ck from Eq. (22) into ξk1 , ξ
k
2 their orthogonality is concluded immediately. �

In Fig. 2 we show the TV-modes defined in Prop. 2 with the initial condition Fig.
3a. It contains six disjoint intervals with the corresponding modes {ξk1 , ξk2}6k=1.

Fig. 2: Modes: ξk1 (teal) - constant, ξk2 (orange) - exponentially decaying.

3.4 Analysis of the Rescaled-DMD

Here, we show a closed form solution to the time Rescaled-DMD (R-DMD). The
common thread in the following discussion is Attribute 6, the orthogonality of
the TV-spectral components. The method is summarized in Algorithm 3.

Theorem 1 (R-DMD of TV-flow). Let τ0 = 0, then for the interval, [τk−1, τk),
where k = 1, · · · , L− 1, R-DMD reveals two non-zero orthogonal modes that re-
construct accurately the TV-flow in this interval. For the last interval, [τL−1, τL),
there is only one nonzero mode.

Proof. According to Prop. 2 and since DMD is an exponential data fitting algo-
rithm, the DMD of the dynamics, Eq. (R-TV-flow), is as follows. The modes are
φk1 = ξk1/

∥∥ξk1∥∥, φk2 = ξk2/
∥∥ξk2∥∥, and the coefficients are αk1 =

∥∥ξk1∥∥ and αk2 =
∥∥ξk2∥∥.

Note that one mode is constant with respect to time and the second decays ex-
ponentially. Therefore, the eigenvalues are µk1 = 1 for the constant mode and
µk2 = e−dt where dt is the sampling step size (see Algo. 3). �

Now we formulate the relation between the TV spectral components ϕk and
the R-DMD modes.

Proposition 3 (Revealing TV spectral components from R-DMD). The
kth spectral component, ϕk, admits the following relation

ckλkϕk = φk2 −
〈φk2 , φk+1

2 〉∥∥φk+1
2

∥∥2 φk+1
2 . (23)



10 Ido Cohen, Tom Berkov, and Guy Gilboa

Algorithm 3 R-DMD for TV-flow

1: Inputs: The initial condition, and sampling step size dt.
2: Initialize: Evolve the solution of (R-TV-flow) uniformly with a step size dt.
3: Invoke Algo. 2 - the result is T and P.
4: Map the set of transition time points, T , to a new set T̂ (Eq. (21)).
5: for Every time segment [τi, τi+1), τi, τi+1 ∈ T̂ do
6: Invoke Algo. 1 with r = 2 (when i = L− 1, r = 1).
7: end for
8: Outputs: Modes {φk

1 , φ
k
2}Lk=1, coefficients {αk

1 , α
k
2}Lk=1, and eigenvalues µk

1 =
1, µk

2 = e−dt.

Proof.

φk2 −
〈φk2 , φk+1

2 〉∥∥φk+1
2

∥∥2 φk+1
2 = ck

L∑
i=k

λiϕi −
〈ck
∑L
i=k λiϕi, ck+1

∑L
i=k+1 λiϕi〉∥∥∥ck+1

∑L
i=k+1 λiϕi

∥∥∥2 ck+1

L∑
i=k+1

λiϕi

= ckλkϕk + ck

L∑
i=k+1

λiϕi − ck
〈λkϕk +

∑L
i=k+1 λiϕi,

∑L
i=k+1 λiϕi〉∥∥∥∑L

i=k+1 λiϕi

∥∥∥2
L∑

i=k+1

λiϕi = ckλkϕk. �

4 Results and conclusion

In this section, the theory and algorithms discussed above are illustrated. We
use standard first-order discretization of the derivatives and Neumann boundary
conditions. We begin with a toy example, depicted in Fig. 3a. In Fig. 1 we show

(a) Toy example (b) Zebra image (c) The red line from (b)

Fig. 3: Initial conditions - (a) Three pulses with different widths. (c) The
corresponding values of the pixels on the red line in (b).

that the solution of (TV-flow) decays linearly and that of Eq. (R-TV-flow)
piecewise exponentially. In Fig. 4-top the TV-spectral decomposition, dashed red
line (computed in the standard way, see [13]) is compared with two algorithms.
First, by Algorithm 3 based on Prop. 3, black dotted line. Second, by Algorithm
2, blue line. The errors between the TV-spectral decomposition and Algorithms
3 and 2 are depicted in Fig. 4-bottom.

In Fig. 5 we show results of the fast TV-spectral decomposition, Algorithm
2, applied on a natural signal. We arbitrarily chose the red line from the zebra in
Fig. 3b, depicted in Fig. 3c. Bands of standard TV-spectral decomposition and
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Fig. 4: TV spectral decomposition comparison for toy example - The
standard method of spectral decomposition (Dashed red line) vs. fast TV decom-
position and R-DMD decomposition in blue and dotted black lines respectively.
Bottom row - respecive errors

Fig. 5: TV spectral decomposition comparison for initial condition de-
picted in 3c - Standard method of spectral decomposition (Dashed red line)
vs. fast TV decomposition (Blue line). Bottom row - respective error.

the fast TV-spectral decomposition are shown in Fig. 5-top. One can observe that
our proposed fast method recovers the spectral bands faithfully, with negligible
error, Fig. 5-bottom.

Rough performance comparison. We report the elapsed time in seconds,
running in Matlab 2018b on an 8th Gen. Core i7 laptop with 16GB RAM.
Initial condition Fig. 3a: Standard method (iterative application of [7]) - 488.4s;
ours - 0.013s. Initial condition Fig. 3c (zebra): Standard method - 7.1 × 103s;
ours - 0.15s. Note that the times specified for our algorithm do not include the
initialization of p0, which takes additional 7.3s for Fig. 3a, and 27.8s for Fig.
3c. This time can be shortened further using faster subgradient computation
algorithms.

Conclusion. In this paper the modes of one-dimensional TV-flow were an-
alyzed. A popular method for finding modes of flows in fluid dynamics, Dy-
namic Mode Decomposition (DMD) [17], was examined. We have presented an
adaptation for the TV case, by a time rescaled version. This was based on the
spectral-TV theory, where the spectral components are orthogonal. Obtaining
TV modes, or nonlinear spectral TV components, requires a gradient-flow evolu-
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tion. Since evolving TV-flow is a slow process using optimization techniques, we
have proposed a very fast method, based on simple updates of the subgradient.
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