G. Gilboa, “Nonlinear Scale Space with Spatially Varying Stopping Time”, PAMI, Vol. 30, No. 12, pp. 2175-2187, 2008.
Abstract:
A general scale space algorithm is presented for denoising signals and images with spatially varying dominant scales. The process is formulated as a partial differential equation with spatially varying time. The proposed adaptivity is semi-local and is in conjunction with the classical gradient-based diffusion coefficient, designed to preserve edges. The new algorithm aims at maximizing a local SNR measure of the denoised image. It is based on a generalization of a global stopping time criterion presented recently by the author and colleagues. Most notably, the method works well also for partially textured images and outperforms any selection of a global stopping time. Given an estimate of the noise variance, the procedure is automatic and can be applied well to most natural images.
Tags: nonlinear diffusion , nonlinear scale-space , stopping time