The Israel Science Foundation (ISF) has awarded me a 4 year grant on the topic “Signal Processing for Highly Complex Nonlinear Systems”. This would allow the group to advance the research well with sufficient funding.
Category: Whats New
EPiC: Ensemble of Partial Point Clouds for Robust Classification, ICCV 2023
Meir Yossef Levi, Guy Gilboa
Accepted to ICCV 2023.
Robust point cloud classification is crucial for real-world applications, as consumer-type 3D sensors often yield partial and noisy data, degraded by various artifacts. In this work we propose a general ensemble framework, based on partial point cloud sampling. Each ensemble member is exposed to only partial input data. Three sampling strategies are used jointly, two local ones, based on patches and curves, and a global one of random sampling. We demonstrate the robustness of our method to various local and global degradations. We show that our framework significantly improves the robustness of top classification netowrks by a large margin. Our experimental setting uses the recently introduced ModelNet-C database by Ren et al.[24], where we reach SOTA both on unaugmented and on augmented data. Our unaugmented mean Corruption Error (mCE) is 0.64 (current SOTA is 0.86) and 0.50 for augmented data (current SOTA is 0.57). We analyze and explain these remarkable results through diversity analysis.
Presenting our work at CVPR 2023
Additive Class Distinction Maps using Branched-GANs
Elnatan Kadar, Jonathan Brokman, Guy Gilboa
We present a new model, training procedure and architecture to create precise maps of distinction between two classes of images. The objective is to comprehend, in pixel-wise resolution, the unique characteristics of a class. These maps can facilitate self-supervised segmentation and objectdetection in addition to new capabilities in explainable AI (XAI). Our proposed architecture is based on image decomposition, where the output is the sum of multiple generative networks (branched-GANs). The distinction between classes is isolated in a dedicated branch. This approach allows clear, precise and interpretable visualization of the unique characteristics of each class. We show how our generic method can be used in several modalities for various tasks, such as MRI brain tumor extraction, isolating cars in aerial photography and obtaining feminine and masculine face features. This is a preliminary report of our initial findings and results.
BASiS: Batch Aligned Spectral Embedding Space, CVPR 2023
Or Streicher, Ido Cohen, Guy Gilboa; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 10396-10405
Graph is a highly generic and diverse representation, suitable for almost any data processing problem. Spectral graph theory has been shown to provide powerful algorithms, backed by solid linear algebra theory. It thus can be extremely instrumental to design deep network building blocks with spectral graph characteristics. For instance, such a network allows the design of optimal graphs for certain tasks or obtaining a canonical orthogonal low-dimensional embedding of the data. Recent attempts to solve this problem were based on minimizing Rayleigh-quotient type losses. We propose a different approach of directly learning the eigensapce. A severe problem of the direct approach, applied in batch-learning, is the inconsistent mapping of features to eigenspace coordinates in different batches. We analyze the degrees of freedom of learning this task using batches and propose a stable alignment mechanism that can work both with batch changes and with graph-metric changes. We show that our learnt spectral embedding is better in terms of NMI, ACC, Grassman distance, orthogonality and classification accuracy, compared to SOTA. In addition, the learning is more stable.
Theoretical Foundations for Pseudo-Inversion of Nonlinear Operators, SSVM-2023
Eyal Gofer, Guy Gilboa, Accepted to SSVM-2023 (oral)
9th International Conference, SSVM 2023, Santa Margherita di Pula, Italy, May 21–25, 2023, Proceedings, Springer LNCS 14009, pp. 29-41, 2023.
Springer conference proceedings
Abstract
The Moore-Penrose inverse is widely used in physics, statistics and various fields of engineering. Among other characteristics, it captures well the notion of inversion of linear operators in the case of overcomplete data. In data science, nonlinear operators are extensively used. In this paper we define and characterize the fundamental properties of a pseudo-inverse for nonlinear operators.
The concept is defined broadly. First for general sets, and then a refinement for normed spaces. Our pseudo-inverse for normed spaces yields the Moore-Penrose inverse when the operator is a matrix. We present conditions for existence and uniqueness of a pseudo-inverse and establish theoretical results investigating its properties, such as continuity, its value for operator compositions and projection operators, and others. Analytic expressions are given for the pseudo-inverse of some well-known, non-invertible, nonlinear operators, such as hard- or soft-thresholding and ReLU. Finally, we analyze a neural layer and discuss relations to wavelet thresholding and to regularized loss minimization.
Graph Laplacian for Semi-Supervised Learning, accepted to SSVM-2023
Or Streicher, Guy Gilboa, accepted to SSVM 2023 (oral)
9th International Conference, SSVM 2023, Santa Margherita di Pula, Italy, May 21–25, 2023, Proceedings, Springer LNCS 14009, pp. 250-262, 2023.
Springer conference proceedings
Abatract
Semi-supervised learning is highly useful in common scenarios
where labeled data is scarce but unlabeled data is abundant. The
graph (or nonlocal) Laplacian is a fundamental smoothing operator for
solving various learning tasks. For unsupervised clustering, a spectral embedding
is often used, based on graph-Laplacian eigenvectors. For semisupervised
problems, the common approach is to solve a constrained
optimization problem, regularized by a Dirichlet energy, based on the
graph-Laplacian. However, as supervision decreases, Dirichlet optimization
becomes suboptimal. We therefore would like to obtain a smooth
transition between unsupervised clustering and low-supervised graphbased
classification.
In this paper, we propose a new type of graph-Laplacian which is adapted
for Semi-Supervised Learning (SSL) problems. It is based on both density
and contrastive measures and allows the encoding of the labeled data directly
in the operator. Thus, we can perform successfully semi-supervised
learning using spectral clustering. The benefits of our approach are illustrated
for several SSL problems.
New Grant by the Ministry of Science
A new 3 years grant was approved by the Ministry of Science and Technology on “Self-Supervised Medical Imaging Detectors”. In collaboration with Dr. Eyal Bercovich from Rambam Medical Center.
The Underlying Correlated Dynamics in Neural Training, preprint
Rotem Turjeman, Tom Berkov, Ido Cohen, Guy Gilboa
Training of neural networks is a computationally intensive task. The significance of understanding and modeling the training dynamics is growing as increasingly larger networks are being trained. We propose in this work a model based on the correlation of the parameters’ dynamics, which dramatically reduces the dimensionality. We refer to our algorithm as \emph{correlation mode decomposition} (CMD). It splits the parameter space into groups of parameters (modes) which behave in a highly correlated manner through the epochs.
We achieve a remarkable dimensionality reduction with this approach, where networks like ResNet-18, transformers and GANs, containing millions of parameters, can be modeled well using just a few modes. We observe each typical time profile of a mode is spread throughout the network in all layers. Moreover, our model induces regularization which yields better generalization capacity on the test set. This representation enhances the understanding of the underlying training dynamics and can pave the way for designing better acceleration techniques.
Analysis of Branch Specialization and its Application in Image Decomposition
Jonathan Brokman & Guy Gilboa, arXiv 2206.05810
Abstract
Branched neural networks have been used extensively for a variety of tasks. Branches are sub-parts of the model that perform independent processing followed by aggregation. It is known that this setting induces a phenomenon called Branch Specialization, where different branches become experts in different sub-tasks. Such observations were qualitative by nature. In this work, we present a methodological analysis of Branch Specialization. We explain the role of gradient descent in this phenomenon. We show that branched generative networks naturally decompose animal images to meaningful channels of fur, whiskers and spots and face images to channels such as different illumination components and face parts.